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Abstract

An image can undergo a visually imperceptible change and yet get confidently misclas-
sified by a trained Neural Network. Puzzled by this counter-intuitive behaviour, a lot of
research has been undertaken in search of answers for this inexplicable phenomenon and
more importantly, a possibility to impart robustness against adversarial misclassification.
This thesis is a first step in the direction of investigating the effect of this adversarial
misclassification on Bayesian Neural Networks. With dropouts as a tool for obtaining
estimates of model uncertainty, this thesis presents a study of model uncertainty for
adversarial images.
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1 | Introduction

Engineering a system for some intuitive tasks involving speech, language, and vision
has a fundamental bottleneck - we ourselves do not understand them completely. For
instance, our incomplete understanding of speech-recognition or visual-cognition, limits
us in writing a look-up table or a deterministic computer program for the task. Deep
Learning has proven to be remarkably useful in these settings Bengio and Courville
(2016).

However, with their massively parametrised structure, it is difficult to argue about the
assumptions these ‘deep’ models make or inductive biases they exploit (Griffiths et al.
(2010), Kohavi and John (1997)). This has become particularly interesting in the light
of recent developments, where Deep Learning models have exhibited counter-intuitive
behaviour for image recognition Szegedy et al. (2013). Neural networks are vulnerable
to adversarial images i.e. images generated by adding imperceptible perturbation(s),
which to a human look the same, but which a trained network misclassifies with high
confidence. This challenges the inductive biases of a neural network, raising a concern
that may be the implicit assumptions in these models are vastly different from the ones
humans make for the same task. From a theoretical standpoint, probabilistic formalism
allows for a principled approach to reason about uncertainty Cox (1946). So perhaps we
should explore this in the ongoing analysis of adversarial misclassification.

Figure 1.1: Adversarial Image. Left: 99% confidence of class being ship. Right: 70%
confidence of it being a truck)

The human aspect of adversarial images makes them particularly interesting. We per-
ceive images in an abstract space which is different from the high-dimensional subspaces
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they are dealt with by the neural network. However, the inconsistent behaviour of a
neural network’s confident disassociation for a pair of perceptually similar images, is at
the very least, highly disconcerting.

An adversarial example us hypothesised to exist far away in the data space. It is therefore
expected that uncertainity estimates for these images can be obtained. This thesis
explores the possibility of investigating model uncertainty for adversarial images by
observing model output with an added layer of marginalisation - via dropouts at test
time.

The thesis has been structured into three chapters which I believe are relevant for mo-
tivating the investigation. The first two chapters provide a modest introduction to
Bayesian Reasoning, Model Uncertainty and Deep Learning. This is followed by the
main contribution of the thesis, where model uncertainty for adversarial images has
been studied.



2 | Bayesian Reasoning

In the literature of Machine Learning, the words ‘Bayesian’ and ’Probabilistic’ are often
used synonymously as mere placeholders for a common set of underlying principles. With
Probability theory as the underlying script, the language of Bayesian reasoning allows
for a simultaneous consideration of all forms of uncertainty. In fact, arguably this is one
of the most distinguishing aspects of probabilistic approach to modelling. Ghahramani
(2015)

Uncertainty has an all-pervasive presence in a Machine Learning model - from noise
in the observations, to a model’s belief about its parameters, to uncertainty in model
predictions, to our belief about the model itself. However, this is more of a boon than a
curse, as its explicit and faithful representation in Bayesian probability theory enables
us to reason with it in a principled way.

2.1 Theory and Practice

The uncertainty (or equivalently degree of belief) in the variability of x, is quantified
mathematically through a function p(x). This function, by virtue of Cox’s axioms must
uphold the rules of probability theory Cox (1946),Jaynes (2003). 1

Modelling approach From a Bayesian standpoint, most Machine Learning tasks can
be conveniently summarised as follows - a model, accompanied with its explicit and
necessary assumptions based on prior knowledge, is capable of making predictions and
performing inference in the light of observed data.

This oversimplified picture is in fact quite powerful and accommodates for a wide breadth
1It is quite gratifying that all of these probabilistic manipulations are governed by two simple and

powerful rules of probability theory, namely, the sum-rule and the product-rule. Ghahramani (2015)
Valpola (2000) Ghahramani (2013)
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of models. Interpreting the rules of probability for a Machine Learning model highlights
some of the salient features of uncertainty representation and manipulation.

Uncertainty representation: All the the believed uncertainties in the mathematical
description of a model are stated via functional definitions - prior p(θ|m), likelihood
p(D|m), noise processes, among other expressions. Through the lens of uncertainty, all
these mathematical relationships are identical.

Uncertainty propagation: Intuitively, uncertainty propagation is required at the
stage of decision-making (computing utilities), which in general translates to inference
or prediction. Mathematically, this involves the use of marginalisation principle (a direct
application of sum and product rule).

Inference and Predictive Probability: The task of inference or learning boils
down to squeezing prior uncertainties (p(θ)) (often with respect to parameters, latent
variables etc.) through the data (D) to posterior uncertainties (p(θ|D, m)) (following
Bayes’ rule).

p(θ|D, m) = p(D|θ, m)p(θ|m)
p(D|m) p(D|m) =

∫
p(D|θ, m)p(θ|m)dθ (2.1)

The normalisation constant, p(D|m) is referred to as Marginal Likelihood or Model
Evidence. At the level of conditioning on m, Bayesian model selection is naturally
implemented as Occam’s Razor Jefferys and Berger (1992). These updated uncertainties
in the posterior can be sequentially propagated while making predictions about the new
data (D∗)

p(D∗|D, m) =
∫

p(D∗|θ, m)p(θ|D, m)dθ (2.2)

The elegance of first principles makes Bayesian reasoning philosophically appealing and
intuitively compelling. However, the theory sheds no light on computational or analytical
intractabilities. The exact computation of the marginalisation integral is, in most cases,
infeasible. Therefore, in practice a range of approximations are used. The inexpensive
point estimates (like maximum likelihood and maximum a posteriori), deterministic
approximations harnessing structural understanding of the problem (like Variational
mean field, Expectation Propagation) and the computationally demanding but often
asymptotically exact stochastic methods.
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2.2 Model Uncertainity

At first glance it appears that the above mentioned approach is constrained to reason
from the point of view of "one" model (or family of models). However, the folklore of
Bayesian theory advises you to marginalise all forms of uncertainties, i.e., not just the
parametric assumptions but structural assumptions

This formal categorisation of the two uncertainties is often unclear and can only be
argued about in context. The supervised learning tasks of regression and classification
provide one place for this examination. Given a dataset D = {(xi, yy)}N

1 , with input
variables x ∈ X and target y ∈ Y , the goal is to predict for a new point x∗ ∈ X , a
point y∗ ∈ Y . Traditionally, for a regression task, Y is a continuos space while for a
classification task, y are nominal labels. A probabilistic classifier models the task as two
subproblems - first, a map from the input variables to class conditional probabilities,
and second, a decision rule based on the obtained probabilities. While the distinction
between uncertainties is clear in a regression framework with continuos, target variables,
presence of a discrete space makes the problem intuitively non-obvious.

In the case of regression, as a function family can capture both parameter and structural
assumptions. For instance the a GP prior captures the two assumptions in its mean and
kernel function. Under these assumptions (and having seen a set of observations D), it
models the predictive distribution p(y∗|x∗, D). The present uncertainties being evident
in the spread of the predictive distribution.

Figure 2.1: A GP based model for regression. Observed points (red), Predicted mean
(blue line) and predicted uncertainty (variance of the predictive distribution), at each
point in the x-space.
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A probabilistic classifier outputs a predictive probability for class labels, which, for a
3-class problem, is a point on the simplex 2.2. Defining a model, as a system which
yields one point on this simplex allows us to define model-uncertainty “across models”.
While defining a model, as a system yielding different points on this simplex for its
different parameter settings, allows us to define a “within-model” uncertainty. Model-
uncertainty in both cases being a representation of structural assumptions. 2.

For the case of classifier, the distinction is fuzzy and boils down to the definition of a
model. Nonetheless, a Bayesian outlook coupled with the latter definition of probability
would encourage you to marginalise a parameter, if an alteration of which, yields a
different point on the probability simplex.

A class-conditional distribution, p(y = l|x) tells us about the uncertainty of ‘an’ asso-
ciation between x and the class label, l. An alternative interpretation of this underlies
in the uncertainty of ‘all’ associations. This demarcation can also be phrased as “prob-
ability of an association” (belongingness to a class) or a “possibility of an associations”
(confidence across different belongingness). At the junction of this desired alignment of
subjective-belief and empirical consistency, in the support of reliable predictions, is the
idea of calibrated probabilities. While adapting a Bayesian perspective, it is advisable
to calibrate a model, if accounting for model-uncertainty.

Figure 2.2: A 3-dimensional simplex where class-conditional probabilities from a 3-class
classifier reside. The top row is representative of images, where the average confidence
is at the centre, but the respective spreads are distributed. Similarly, the images in the
bottom row demonstrate spread with confident classification with respect to a class.

2It must be emphasised here that from a decision making perspective, the eventual output required
is a probability vector. One wouldn’t want multiple outputs from a weather-predictor: a model cannot
simultaneously predict, both 10% and 20% chance of rain today. Definition of a model as a system
yielding one point on the simplex is therefore, more intuitive from a probabilistic-classifier viewpoint.
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3.1 Deep Learning for Classification

Given a dataset D = {(xi, yy)}N
1 (or D = {X, Y }), with input variables x ∈ X and target

variables y ∈ Y , the goal is to predict for a new point x∗ ∈ X , a point y∗ ∈ Y . The Deep
Learning approach, assumes a highly-parameterised non-linear functional relationship
y = f(W, x) between the paired values. The goal of prediction is split into two phases -
training and testing1. During training, a cost function C(y1, y2) (for measuring the score
or similarity between target vectors) is optimised. The optimisation The adjustable
parameters W are then updated to minimise this objective function for the observed
data set minW

∑N
i C(f(W, xi), yi))

These learning modes are motivated are thus part of a toolbox approach where a model
is optimised (fit) to explain the observations (training). Hence, we often get only point
estimates form the output layer. “Optimisation” is outside the vocabulary of Bayesian
modelling theory and hence often the assumptions of a Deep Learning model are often
unclear. In theory, one can ascribe a Bayesian interpretation to these models, but there
are immense computational challenges to arrive at such an interpretation.

For a well trained model, the optimised W, encodes the necessary information from the
input image, i.e. required for generalisation during prediction. However a stochasticity
of these during test-time is not accounted for in conventional DNN models.

3.2 Model Uncertainty for Classification

As discussed in the previous section, a Bayesian outlook towards classification encourages
you to look at uncertainty estimates while taking a decision. Although a Deep Neural

1a discrimination absent in a “truly” probabilistic framework
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Network can be used as a probabilistic classifier, getting these uncertainty estimates is
computationally challenging. Ascribing a Bayesian interpretation to a Neural Network
has a long standing history, most of which involve further computation. An inexpensive
way to get these uncertainty estimates was proposed in Maeda (2014) and Gal and
Ghahramani (2015b). The later also established a grounding for this in Variational
Inference.

Model uncertainty is fundamental for decision making. A decision based on one-model
is often not encouraged. This philosophy is shared across a variety of DNN-models in
different settings. For instance, speech-recognition systems incorporate an engineered
model averaging by intricate sequence alignment schemes.

For Deep Neural Network used for classification, the final layer is a soft-max layer. When
faced with a large point-estimate for a point away from the data set, softmax yields a
high-confidence output. This is the space of extra marginalisation which can be achieved
with Dropouts (as demonstrated in Gal and Ghahramani (2015b)). Model uncertainty
is critical to deployment of DNN in settings like Reinforcement Learning or self-driving
cars as decision of not recognising vs recognising a person on street can be extremely
critical.

3.2.1 Dropouts as Variational Approximation

In a supervised learning setting, the predictive distribution for a new point x∗, is given
by 2

p(y∗|x∗, X) =
∫

p(y∗|x∗, W )p(W |X, Y )dW (3.1)

As discussed in the previous section, this is often intractable and in most cases because
of analytical intractabilities of the posterior, p(W |X, Y ). The approximation frame-
work of Variational Inference proposes to use an approximate variational distribution
q(W ) in place of the exact posterior. It then frames this as an optimisation problem
where a similarity measure (Kullback-Liebler (KL) divergence) is minimised between
the exact and approximate posteriors. This yields the following approximate predictive

2the parameters notation has been changed from theta to W in alignment with the conventional
usage the latter in the context of DNN
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distribution.

q(y∗|x∗, X) =
∫

p(y∗|x∗, w)q(w)dw (3.2)

The minimisation of this KL, is equivalent to maximisation of log evidence lower bound
(ELBO), which is the objective function used in practice (LV I).

LVI =
∫

q(w) log p(Y |X, w)dw − KL(q(w)||p(w)) (3.3)

It was shown that for a specific choice of the prior and a specific choice of the approxi-
mate posterior, performing Dropouts during training is equivalent to optimisation of an
unbiased estimator of LVI. A strong basis of dropouts in the variational framework has
also been suggested in Maeda (2014) and Kingma et al. (2015).

An effective usage of Dropouts for modelling model-uncertainty was observed in Kendall
et al. (2015). This, coupled with the theoretical groundings, provides the motivational
basis for exploration of model uncertainty for adversarial images.



4 | Adversarial Images

4.1 Framework

The question of robustness is not new to machine learning models. It has been central
to their usage in computer-security systems (Asuncion and Newman (2007) Huang et al.
(2011)). These scenarios have an intrinsic adversarial setting, like spam filtering, where
malicious adversaries are driven to threaten the integrity of security systems. The pop-
ular deployment of Machine Learning models in AI-agents has only broadened the scope
of this field.

The model family of Neural Networks has had an unparalleled success in computer vision
tasks. This is usually attributed to the expressibility of convolutional-neural networks
in a grid-like setting which is conveniently suited for images. Their large inductive
bias allows them to make useful abstractions from images for tasks like classification.
However, recent developments (Szegedy et al. (2013)) have exposed some bizarre aspects
of Neural Networks, which has challenged their generalisability over image spaces.

One of these concerns is the unexplained existence of adversarial images, specifically
images generated by adding imperceptible perturbation(s), which to a human
look the same, but which a neural network fails to classify correctly with high
confidence. The implicit human involvement in this definition makes the question of
adversarial examples interesting, challenging and fuzzy. Hence, for the sake of clarity I
will be utilising the following representation framework (as motivated in Dziugaite et al.
(2016)) for discussing adversarial images.

• Human space: In this space, images ”exist” by definition. Thus every image
belongs to this space and consequently so do each of the subspaces defined below.
However, for the sake of discussion I will be looking at images which we as humans
can observe, interpret and talk about, like the ones printed on a piece of paper or
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observed on a screen. 1

• Storage space: This is space of images representation which can be stored in
memory. Again, by definition, this includes all tensor representations used in a
computer program, or equivalently each of the subspaces defined below. I will,
however be using this to refer to images stored as JPEG, PNG and similar bitmap
representations.

• Neural Network feature space: The space of all network layers which by defi-
nition also includes the output layer of class labels.

Figure 4.1: A framework for understanding the phenomenon of adversarial examples

Inconsistency: Any two image representations can by pulled to the human-space for a
qualitative judgement. The aspect of “imperceptible difference” is loosely defined along
this line. As humans, we do not disassociate between a paired image x and xadv, in their
representations as bitmaps (in storage-subspace) and the class-label (in feature space).
However, Deep Learning models have been shown to make this dissociation in the space
of class-labels, and by definition of adversarial examples, a strong disassociation, begging
for a close inspection of which assumption(s) neural networks make differently.

1Figure 4.1 represents image-similarity for humans as closely-separated circles which is indicative of
the imperfect definition of perceptual similarity for humans
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4.2 Ongoing Research

Easy generation: An adversarial example can be easily generated by propagating the
gradient computed for the Neural Network’s cost function to the input space Goodfellow
et al. (2014), Szegedy et al. (2013). An iterative version of this generation strategy, with
smaller step size can also be adapted to examine the evolution of an input image through
the adversarial transformations. I will refer to the first method as FastGradSign and
the the corresponding iterative version as SlowGradSign.

Transferability to other models: An adversarial example generated for one model,
is almost always an adversarial example for a different model (Goodfellow et al. (2014)).
This indicates that adversarial nature doesn’t owe an explanation of model-overfitting
which is a common trait of “fit”-ed models. Traditional regularisation techniques like
Dropouts and data augmentation techniques have also failed at accommodating adver-
sarial perturbations. The most surprising observation in this regard was the robustness
of adversarial images to models trained on a disjoint dataset.

Robustness to bitmap transformations: An invariance to transformation in these
subspace has been explored in some recent investigations Dziugaite et al. (2016), Kurakin
et al. (2016). Robustness of adversarial images to JPEG compression schemes and
transformations via ‘physical’ world have been reported. These transformations can
be argued as modifications of an image in the storage space - JPEG transformation
being carried out with-in the space while the latter through an approximation of it.
In their experimental setup,Kurakin et al. (2016) print an adversarial image and feed
it back to the network through a camera. Based on their observations, they argue of
adversarial perturbations to be occurring in an orthogonal space of JPEGs for natural
images. Dziugaite et al. (2016) looked at the aspect of varying adversarial perturbation
when coupled with JPEG compression. They report of a selective robustness to JPEG
transformation.

Different modelling assumptions: Goodfellow et al. (2014) also report of an arguable
robustness of their procedure for adversarial image generation across differently trained
models, like RBM.

An investigation of CNN layers: Billovits et al. performed extensive observations
about the sensitivity of activation to adversarial perturbations. Based on their observa-
tions, they hypothesise dropouts to improve robustness against adversarial images.
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4.3 A Hypothesis

In theory, mc-approximation of neural-networks, performs an additional layer of marginal-
isation in its process of computing the final probability vector. A robustness against
adversarial images can therefore be expected if the required marginalisation is the pa-
rameter variation an adversarial misclassification is missing on. A significant presence
of this extra-marginalisation can potentially shed light on the neural-network dynamics
or at the very least be utilised for an improved decision making for image classifica-
tion.

4.4 Findings

Models and dataset: Adversarial images were generated for CIFAR-10 (Krizhevsky
and Hinton (2009)) test set for models trained for the LeNet (LeCun et al. (1998))
architecture (Gal and Ghahramani (2015a)). This includes training with no dropouts
(no-drop), dropouts used after the inner-product layers (ip-drop) and dropouts at every
layer (all-drop). The Bayesian interpretation of dropouts as suggested in Gal and
Ghahramani (2015a), allows for two interpretations for the latter two models, namely
a ‘std’ interpretation - with no dropouts at test time (ip-std,all-std) and an ‘mc’
approximation - with dropouts at test time (ip-mc,all-mc).

Adversarial image generation: As per FastGradSign method Goodfellow et al.
(2014), an adversarial image xadv, can be generated for an image x by adding gradients of
the cost function, computed with respect to a true label ytrue(moving away from the ’true’
class). Here, θ represents the pre-trained model parameters ({θno−drop, θip−drop, θall−drop}).

xadv = x + ϵ∇xJ(x, ytrue, θ) (4.1)

Note that there are several variants of this method. Some obvious ones being, adding
gradients with respect to an adversarial label, yadv (moving towards an adversarial label),
or adding gradients iteratively, in the same fashion as backpropagation. The latter
being defined as SlowGradSign. This method in turn can have invariants as - adding
a constant gradient through multiple iterations, or computing new gradients through
back-propagation.
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Figure 4.2: 1. FastGradSign - move towards an adversarial label; 2. SlowGradSign -
move towards an adversarial label; 3. FastGradSign - move away from true label; 4.
SlowGradSign - move away from true label

Experimental Setup: Low recall models are inherently robust to adversarial classi-
fication. Hence, for an objective comparison across the three models, 100 images sere
chosen from the CIFAR-10 test set which were classified with high confidence by all the
three trained-models. Adversarial images for these were constructed using FastGradSign
?? (ϵ = 0.008 for θno-drop)2. The obtained images were observed to be adversarial for
each of fc-drop-std, fc-drop-mc, all-drop-std, and all-drop-mc Figure 4.4. This
is consistent with the observation made by Goodfellow et al. (2014), where regularisa-
tion using dropouts was noted to provide no additional robustness against adversarial
examples.

Figure 4.3: A set of 100 adversarial images were generated using FastGradSign for
no-drop with ϵ = 0.008. The nodrop model had an average true-class confidence of
75% for images on the left, while it had an average true-class confidence of 10% for the
images on the right .

2The images are fed to the network after a pre-processing step involving a combination of global-
contrastive-normalisation step and ZCA transform Krizhevsky and Hinton (2009). The gradients com-
puted were back-propagated through these transform
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Selective robustness: In addition, I also inspected the misclassification confidence
on mc-approximation, which were also found to provide no additional layer of global-
robustness. Although, for a fixed, ϵ, mc-approximated models were observed to be less-
confident in misclassification in comparison to their std-interpretations. Even if the
result after Monte-Carlo approximations demonstrates a lack of robustness, in theory,
the model-uncertainty being marginalised might be present. A small but insignificant
presence was observed for the adversarial images (generated using FastGradSign, 4
samples shown in Figure 4.4).

Figure 4.4: The image on the left compares average classification to the correct labels
for the original image (red) and adversarial image (blue). The image on the right is the
scatter plot for 4 image-pairs (original-red, adversarial-blue), with red-scattered lines
being samples corresponding to true labels and blue being samples corresponding to
eventual adversarial class). The left set of columns are the ip-drop-mc and the right
set of columns are for all-drop-mc. The second figure is only demonstrative and doesn’t
lead to any tangible comclucions

The SlowGradSign, method allows for a finer-but-qualitiative inspection of the manifold
where adversarial images are known to exist. The observed curves (Figure 4.5) are
consistent with the global observation where images were misclassified by all the models.
Since there is some extra information present in terms of Monte-Carlo samples in the
mc-approximation method, this can be utilised as a debugging or a diagnostic tool 3

3It must be noted that these are probability vectors in themselves. An interpretation of distribution
over probability vectors might be misguided. By performing the Monte Carlo estimate the neural
network model merely performs an additional marginalisation before computing the eventual probability
vector.
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Figure 4.5: Evolution of class conditional probability for the true label (averaged across
100 images). The adversarial images were obtained using SlowGradSign with negative
gradients added with respect to an adversarial label (epsilon=1e-3). The x-axis repre-
sents gradients-steps.

Statistical dispersion (moving-away from true): For a qualitative analysis, a vari-
ance of class-conditional probability for the true-label was observed for the same evolu-
tion of adversarial misclassification. The hump suggests that the all-drop-mc model
exhibits some statistical-dispersion in these probability vectors. A better grasp at the
statistical dispersion can be observed in variational-ratio as it measures dispersion across
all labels (Figure 4.6 (right)). The alldrop model is observed to be more confused in
the process of picking an adversarial class (when the SlowGradSign method is used to
move away from the true label). As the all-drop model becomes less confident on the
original label with slow addition of perturbations, it goes though a regime of confusion
before picking an adversarial label.

Figure 4.6: Statistical dispersion in probability vectors (moving away from the true
class). The figure on the left quantifies the dispersion using variance in the class-
conditional probabilities of the true label. The figure on the right quantifies the dis-
persion in the probability vectors as the variation ratio of class labels, where the labels
were computed as argmax of the probability vectors. Both these quantities have been
averaged across the 100 images. The x-axis represents gradients-steps.
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Microscopic analysis for 1 image: The fishing expedition was furthered towards an
image-specific analysis. An image of a ’ship’ was selected for this purpose. As discussed
previously, the flexibility of choosing the y label, allows for two different explorations
of the manifold - away from the true-label (with positive gradients) and towards an
adversarial label (with negative gradients). The observations in 4.7 were consistent with
the global phenomenon Figure 4.5. The only interesting behaviour being exhibited by
all-drop model for the away-from-ship case. While it moved away from the ship label,
(4.7), as expected, it moved towards ’dog’ instead of ’bird’, which was the class picked
by no-drop and ip-drop. This is not a generalisable quality as it was observed for a
specific image and the stochastic-optimisation algorithms are highly sensitive to choice
of step size. The other interesting observation was in the structural similarity of
ip-drop and no-drop reflected in the case when the optimisation is done towards an
adversarial class (Figure 4.7 first column, right set; the spread of the scatter plots is thin
and the red-line (ip-drop) converges in the same fashion as the green (no-drop))). These
are consistent with the observations of variational ratio as explained below.

Figure 4.7: Right set of images : away from‘ship’ (SlowGradSign with positive epsilon).
Left set of images : towards ’truck’ (SlowGradSign with negative epsilon). Top row
class-condition probabilities for ’ship’. Bottom row - left set: class ’bird’, right set: class
’truck’. Plot lines - ’green’ : nodrop, ’red’ : ip-drop-mc, ’blue’: all-drop-mc. The blue
and green scatter points are samples with dropouts at test time. The x-axis represents
gradients-steps.

Statistical dispersion (moving-towards an adversrial) The contrast of moving-
away and moving towards was inspected for all the 100-images. Variational Ratio and
variance were used as diagnostic tools. The results indicate of a structural similarity
between no-drop and ip-drop. As the images were generated for gradients computed
with θnodrop, a smoother transitioning suggests of the structural similarity. The ipdrop
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model ‘agrees-with’ nodrop. The alldrop model undergoes an intermediary phase of
disagreement, but eventually agrees with no-drop model. These observations are in-
conclusive in a generic setting and are speculated to reflect on the general behaviour of
dropouts with respect to ReLU units.

Figure 4.8: (moving-towards an adversarial label). Evolution of class conditional prob-
ability for the true label (averaged across 100 images). The adversarial images were
obtained using SlowGradSign with positive gradients added with respect to true label
(epsilon=1e-3). The x-axis represents gradient steps

Figure 4.9: Statistical dispersion in probability vectors (moving-towards an adver-
sarial class). The figure on the left quantifies the dispersion using variance in the
class-conditional probabilities of the true label. The figure on the right quantifies the
dispersion in the probability vectors as the variation ratio of class labels, where the
labels were computed as argmax of the probability vectors. Both these quantities have
been averaged across the 100 images. The x-axis represents gradient steps

Noise images: A sensitivity to ReLU units is also evident in the adversarial behaviour
of noisy-images. 4. An interesting property lies in high interpretability even in the

4The noisy image was sampled from sampled in the space storage-space of CIFAR-10 data set as
downloaded from the source. Each pixel of the image was sampled from a Normal distribution with
mean and variance set to empirical mean and variance of the CIFAR10 test set. Before feeding it into
the network, the image underwent the mandated preprocessing of gcn and ZCN.
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initial stage Figure 4.10 (as has been observed in Nguyen et al. (2015)). This image was
observed to jump to its adversarial label, with steeper transitions and no uncertainty
regions (as opposed to the smoother banded transition observed for a natural image).
This is a characteristic of ReLU units which assign high significance to numbers which
exist away from the data set. A softmax activation is sensitive to such inputs from ReLU
and squashes these to either 0 or 1, which is what is evident in the scatter-points in the
Figure 4.10 (right).

Figure 4.10: Evolution of a noisy-image (moving-towards an adversarial class). The
figure on the left shows the evolution of noisy image across 100 gradient steps of Slow-
GradSign. The image was observed to belong to the class ‘frog’. The gradients however
were set to guide it towards ‘tree’.
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In this thesis, model uncertainty for adversarial images was explored. The recent demon-
strations of existence of adversarial images have raised concerns about the reliability of
Neural Networks. Their confident misclassification of adversarial images is an invitation
for investigation of uncertainty estimates for these adversarial images. Bayesian Neural
Networks are a natural starting point for this investigation. However, most Bayesian
interpretations are computationally expensive. With its root in variational inference,
estimates based on dropouts have been proposed to capture model uncertainty. Ben-
efiting form this inexpensive proposal, model uncertainty for adversarial images was
explored.

Neural Networks with dropout-approximation at test time were not found to be ro-
bust to adversarial images. An additional layer of marginalisation by incorporating
dropouts at test time was not known to ascribe the desired robustness to a neural net-
work. A finer resolution with small gradient increments was indicative of a period of
confusion that a neural network undergoes before assigning an adversarial label with
high-confidence. Thus, a selective robustness to small adversarial perturbations can be
claimed for dropout-approximated neural networks. As the experiments were conducted
on a relatively small data set, the speculations may not generalise in multi-dimensional
classifications like ImageNet and CIFAR100.

The bizarre behaviour of neural networks, when faced with noisy (humanly) uninter-
pretable images is an open ground and a potential ground of answers. A detailed in-
vestigation of human-disassociation and neural-network 4.1 disassociation across a more
refined space hierarchy might shed light on the currently unexplained phenomenon of
adversarial images.

Robustness against adversarial images is the eventual desired property. Many proposals
have been suggested in this direction. An interesting investigation would be the use a
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non-parametric approximation on the final layer The classical Gaussian Process models
are known to push the uncertainty to regions to their prior when faced with a point
away from a data space. With an appropriate kernel choice, this can be hypothesised to
account for the desired marginalisation of adversarial perturbation. This has a similar
flavour to the proposal made in litertature, where they propose to push the a data
distribution estimate as a prior before the softmax.

It is also contended that the phenomenon of adversarial images may not owe its expla-
nation in dissimilarity for natural images but in the strong interpretability and corre-
spondingly, strong association and disassociation for noisy images. This also calls for an
investigation of data-augmentation schemes directed towards disassociation rather the,
more conventional, association.
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